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Abstract—Querying heterogeneous and large-scale knowledge graphs is expensive. This paper studies a graph summarization

framework to facilitate knowledge graph search. (1) We introduce a class of reduced summaries. Characterized by approximate graph

pattern matching, these summaries are capable of summarizing entities in terms of their neighborhood similarity up to a certain hop,

using small and informative graph patterns. (2) We study a diversified graph summarization problem. Given a knowledge graph, it is to

discover top-k summaries that maximize a bi-criteria function, characterized by both informativeness and diversity. We show that

diversified summarization is feasible for large graphs, by developing both sequential and parallel summarization algorithms. (a) We

show that there exists a 2-approximation algorithm to discover diversified summaries. We further develop an anytime sequential

algorithm which discovers summaries under resource constraints. (b) We present a new parallel algorithm with quality guarantees. The

algorithm is parallel scalable, which ensures its feasibility in distributed graphs. (3) We also develop a summary-based query evaluation

scheme, which only refers to a small number of summaries. Using real-world knowledge graphs, we experimentally verify the

effectiveness and efficiency of our summarization algorithms, and query processing using summaries.

Index Terms—Graph summarization, pattern mining, parallel algorithm
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1 INTRODUCTION

KNOWLEDGE graphs are routinely used to represent enti-
ties and their relationships in knowledge bases [1], [2].

Unlike relational data, real-world knowledge graphs lack
the support of well-defined schema and typing system.

To search knowledge graphs, a number of query process-
ing techniques are proposed [2], [3], [4], [5]. Nevertheless, it
is hard for end-users to precise queries that will lead to
meaningful answers without any prior knowledge of the
underlying data graph. Querying such knowledge graphs is
challenging due to the ambiguity in queries, the inherent
computational complexity (e.g., subgraph isomorphism [2],
[3]) and resource constraints (e.g., data allowed to be
accessed, response time) [6] large knowledge graphs.

Example 1. Fig. 1 illustrates a sample knowledge graph G
of artists and bands. In this example, T: McGraw is the
correct answer for Q.

The evaluation ofQ over largeG is expensive. For exam-
ple, the ambiguous label “artist” requires the inspection of
all the entities having the type. Moreover, it is hard for the
users to specifyQwithout prior knowledge ofG.

Observe that the graphG can be “summarized” by three
small graph patterns P1, P2 and P3, as illustrated in
Fig. 1. For example, P1 specifies three artists J: Browne,
T: McGraw and D: Yoakam in G as a single node artist,
who are associated with their band, genre and films as 1
hop neighbors, indicating “musicians”; and (i.e., “actors”).
These concise summaries help the users in understanding
Gwithout a daunting inspection of low-level entities.

Wemay further use these patterns as “views” [7], [8] to
speed up knowledge discovery inG. For example, P1 and
P2 can be “materialized” by the entities they summarize
inG, which already contains the matches ofQ.Q can then
be correctly answered by accessing these entities only,
without visiting an excessive number of entities inG.

The above example suggests that graph patterns can ben-
efit knowledge search by suggesting (and can be directly
queried as) highly interpretable “views”. In addition, such
summaries can help users in understanding complex
knowledge graphs without inspecting a large amount of
data, explaining facts with interpretable evidences, and sug-
gesting meaningful queries in mining tasks.

Although desirable, computing summaries for schema-
less knowledge graph is nontrivial. Conventional graph sum-
maries defined by frequent subgraphs capture their isomor-
phic counterparts in a graph [4], [9], [10], [11]. This can often
be an overkill for entities with similar, relevant neighbors up
to a certain hop. For example, the two entities J: Browne and
T: McGraw alongwith their relevant 1 hop neighbors in Fig. 1
should be summarized by a single summary P1, despite that
the two subgraphs induced by these entities are not isomor-
phic to each other; similarly for the entities T: Hanks and
M: Ryan summarized by P3. We ask the following questions:
1)How to model concise and informative summaries in schema-less
knowledge graphs? 2) How to discover the summaries in large
graphs? and moreover, 3)How can we leverage the summaries to
support fast knowledge graph search?

Contributions. This paper studies a novel graph sum-
marization framework to compute diversified summaries,
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and to evaluate knowledge graph queries with the summa-
ries. It nontrivially extends [12] by including new summary
models, complete proofs, new parallel algorithms with per-
formannce guarantees on summarizatin qualty and scalabil-
ity, and enriched experimental study for the new models
and summarization in large, distributed graphs.

(1) Extended summary models. We introduce a new class of
graph patterns, namely, reduced d-summaries, to sum-
marize entities in terms of their neighborhood simi-
larity up to a bounded hop d with minimized
summary size. The new summary model refines its
counterpart in [12] by capturing and removing the
redundancy in summaries. We show that reduced
d-summary is feasible in practice, by studying the
verification and reduction problems, which checks if
a graph pattern is a reduced d-summary, and reduces
a summary to its reduced counterpart, respectively.

(2) Diversified Summarization. We extend bi-criteria func-
tions in [12] to quantify the quality of reduced
d-summaries that integrates both informativeness
and diversity measures (Section 3). Based on the
quality function, we introduce the problem of diversi-
fied graph summarization.

(3) Parallel summarization. We show that the diversified
summarization problem remains to beNP-hard for
reduced summaries.We show that diversified summa-
rization is feasible with a single processor (Section 4),
andwithmultiple processors (Section 5).

(a) We first develop sequential algorithms for
reduced summaries. We show that the summari-
zation problem is 2-approximable, by developing
a sequential algorithm that follows a validate-
and-diversify scheme, and invokes a fast sum-
mary reduction procedure. We also extend the
anytimemining algorithm in [12] to reduced sum-
maries, which can be interrupted and provides
“ad-hoc” summaries with desirable quality guar-
antees, adapting to specific resource bounds
(e.g., memory, response time) (Section 4).

(b) We develop new parallel algorithm for diversi-
fied summarization over large graphs (Section 5).
The algorithm has the parallel scalability, a guar-
antee to reduce response time with the increase
of processors. This ensures the feasibility of sum-
marization in large graphs by adding processors.
We have developed new parallel matching and
mining operators, and load balancing strategies

for reduced summary discovery. These are not
addressed in [12].

(4) We further develop a query evaluation algorithm
over knowledge graphs for the class of subgraph
queries. The algorithm selects and refers to a small
set of summaries that best “cover” the query, and
fetches entities from the original knowledge graph
only when necessary (Section 6).

(5) Using real-world knowledge bases and synthetic
graphs, we experimentally verify the effectiveness of
reduced d-summaries, and the scalability of summari-
zation and query-evaluation algorithms (Section 7).
We found the following. (a) It is feasible to compute
summarizations over real-world knowledge graphs.
For example, it takes 300 seconds over a knowledge
graph YAGO with 3.9 million nodes and relation-
ships, and it achieves a scalability of 3.3 times
faster when the number of workers increases from
4 to 20. (b) The summaries effectively support con-
cise, informative and diversified summarization.
(c) The summarization significantly improves que-
rying efficiency (e.g., by 40 times for YAGO). Our
case studies verifies the application of reduced
summaries in knowledge search, query suggestion
and fact checking in knowledge graphs.

The work is the first step towards discovering and using
diversified summarization to understand and search large-
scale knowledge graphs. We believe that our framework
suggests promising tools for accessing, searching, and
understanding complex knowledge graphs.

2 KNOWLEDGE GRAPH SUMMARIZATION

2.1 Graphs and Summaries
We start with the notions of knowledge graphs, and then
introduce summaries for knowledge graphs.

Knowledge Graphs. We define a knowledge graph G as a
directed labeled graph ðV;E; LÞ, where V is a set of nodes,
and E � V � V is a set of edges. Each node v 2 V represents
an entity with label LðvÞ that may carry the content of v
such as type, name, and attribute values, as found in knowl-
edge bases and property graphs [2]; and each edge e 2 E
represents a relationship LðeÞ between two entities.

We do not assume a standard schema over G, and our
techniques will benefit from such a schema, if exists.

Example 2. Fig. 1 depicts a fraction of a typed knowledge
graph. Each entity (e.g., J: Browne) has a label that carries
its type (e.g., artist), and connects to other typed entities
(e.g., band) via labeled relationships (e.g., collaborated).

We use the following notations: (1) A path r in a graph G
is a sequence of edges e1; . . . ; en, where ei = ðvi; viþ1Þ is an
edge in G; (2) The path label LðrÞ is defined as Lðv1ÞLðe1Þ . . .
LðvnÞLðenÞLðvnþ1Þ, i.e., concatenation of all the node and
edge labels on the path r; and (3) A graph G0 = ðV 0; E0; L0Þ is
a node induced subgraph of G = ðV;E;LÞ if V 0 � V , and E0

consists of all the edges in G with endpoints in V 0. It is an
edge induced subgraph if it contains E0 � E and all nodes
that are endpoints of edges in E0.

Summaries. Given a knowledge graph G, a summary P of
G is a connected graph pattern ðVP ;EP ; LP Þ, where VP

(resp. EP � VP � VP ) is a set of summary nodes (resp.
edges). Each node u 2 VP (resp. edge e 2 EP ) has a label

Fig. 1. Knowledge graph, summaries, and graph query.
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LP ðuÞ (resp. LP ðeÞ), representing a non-empty node set ½u�
(resp. edge set ½e�) from G.

The base graph of P in G, denoted as GP , refers to the sub-
graph of G induced by the node set

S
u2VP ½u�, and the edge

set
S

e2EP
½e�, for each u 2 VP and e 2 EP . Note that a base

graph can be disconnected for a connected summary.
A summary should provide an abstract of the entities

with similar neighborhoods in G. To capture this, we intro-
duce a notion of d-matching.

d-matching. Given a graph pattern P and a graph G, a
backward (resp. forward) d-matchingfrom P to G is a nonempty
binary relation R"

d � VP � V (resp. R#
d � VP � V ), where

� ðu; vÞ 2 R"
0 and ðu; vÞ 2 R#

0 if LP ðuÞ = LðvÞ;
� ðu; vÞ 2 R"

d if ðu; vÞ 2 R"
d�1, and for every parent u0 of

u in P , there exists a parent v0 of v in G, such that
LP ðu0; uÞ = Lðv0; vÞ (i.e., edges ðu0; uÞ and ðv0; vÞ have
the same edge label), and ðu0; v0Þ 2 R"

d�1;� ðu; vÞ 2 R#
d if ðu; vÞ 2 R#

d�1, and for every child u0 of u
in P , there exists a child v0 of v in G such that
LP ðu; u0Þ = Lðv; v0Þ, and ðu0; v0Þ 2 R#

d�1.
We define a d-match Rd between P and G as the set of

node pairs fðu; vÞjðu; vÞ 2 R"
d \R#

dg. We say P is a d-summary
of G (denoted as P � G), if for every summary node u and
every node v 2 ½u�ð½u� 6¼ ;Þ, ðu; vÞ 2 Rd.

Intuitively, a d-summary P guarantees that for any
incoming (resp. outgoing) path r of a summary node u with
a bounded length d in P , there must exist an incoming
(resp. outgoing) path of each node in ½u�with the same label.
That is, P preserves all the neighborhood information up to
length d for each summary node u in P .

We now characterize graph summarization with summa-
ries. Given a knowledge graph G and an integer d, a summa-
rization SG of G is a set of d-summaries.

The matching relation can also incorporate transforma-
tion functions [5] to allow node similarity as used in knowl-
edge graph embedding.

Example 3. Fig. 1 illustrates a summarization of the knowl-
edge graph G, which contains three 2-summaries P1, P2,
and P3. The base graph of P1 is induced by the entities
shown in the table below (the edges are omitted).

summary node entities

[genre] f country, punk g
[film] fGoing Home, Four Holidaysg
[artist] fJ: Browne, D: Yoakam, T: McGrawg
[band] fThe Eagles, Husker Du, Def Leppard g

Indeed, for every path of length bounded by 2 in
P1 (e.g., rp = fgenre, artist, bandg) and for every entity
with label genre, there exists a path r (e.g., fcountry,
J: Browne, The Eaglesg) in G with the same label as

rp. Similarly, one may verify that P2 summaries the

band Def Leppard and The Eagles, their associated
country and manager in G, and P3 summaries the

films You0ve got a Mail and Sleepless in Seattle, actors

T: Hanks and M: Ryan and their countries.
Note that P1 cannot summarize T: Hanks, as the latter

has no path to a band as suggested in P1.

2.2 Summary Verification
Given a graph pattern P , a knowledge graph G and inte-
ger d, the verification problem is to check if P is a

d-summary of G, and if so, identify the largest base graph
GP of P in G. In contrast to its counterpart defined by fre-
quent subgraphs (NP-hard), the verification of d-summa-
ries is tractable.

Lemma 1. Given a summary P = ðVP ;EP ; LP Þ, integer d, and a
graph G = ðV;E; LÞ, it is in OðjVP jðjVP j þ jV jÞðjEP j þ jEjÞÞ
time to verify if P is a d-summary of G.

Proof. As a proof of Lemma 1, we outline an algorithm,
denoted as valiSum, that determines if P = ðVP ;EP ; LP Þ is
a d-summary in polynomial time. The algorithm valiSum
first initializes a match set ½u� = fvjðu; vÞ 2 R"

0; v 2 V g for
each node u 2 VP . It then refines the match sets as follows.
(1) It computes the forward d-similarity relation R#

d. For
each edge ðu0; uÞ 2 EP , it iteratively removes all the nodes
v0 in ½u0� if there exists no child of v0 in G such that
ðu; vÞ 2 R#

i�1, for i 2 ½1; d�. This process repeats until no
change can be made to ½u�, for each node u in VP . (2) It con-
tinues to refine the match sets derived from (1), by remov-
ing the nodes that do not satisfy the backward d-similarity
relation. If for every node u 2 VP , ½u� 6¼ ;, P is a d-sum-
mary. Otherwise, P is not a d-summary by definition.

The algorithm has the following invariants: (1) For any
pair ðu; vÞ 2 R"

d \R#
d, v 2 ½u� when it terminates. (2) If a

node v is removed from ½u� at any time, then ðu; vÞ =2 Rd.
Hence it correctly computes the largest Rd and GP . For
complexity, it takes OððjVP j þ jV jÞðjEP j þ jEjÞÞ time to
verify forward and backward d-similarity for a single
summary node in VP . Thus the total cost is in OðjVP j
ðjVP j þ jV jÞðjEP j þ jEjÞÞ. tu
The notations of this paper are summarized in Table 1.

3 DIVERSIFIED SUMMARIZATION

We next introduce a bi-criteria function that captures the
quality of knowledge graph summarization in terms of both
informativeness and diversity, followed by the formulation
of diversified summarization problem.

3.1 Informative Summaries
The informativeness of a summary P should capture the
total amount of information (entities and their relationships)
it encodes in a knowledge graph G [13]. We define the infor-
mativeness function Ið	Þ of a summary P as:

IðP Þ ¼ jP j
bP


 suppðP;GÞ

TABLE 1
Notations

Symbol Definition

G = ðV;E; LÞ knowledge graph G
P = ðVP ;EP ; LP Þ summary P as a graph pattern
GP base graph of summary P in G
SG summarization of G
cardðSGÞ cardinality of SG

suppðP;GÞ support of summary P in G
IðP Þ informativeness of summary P ; IðP Þ =

jP j 
 suppðP;GÞ
diffðPi; PjÞ distance between summaries Pi and Pj

F ðSGÞ bi-criteria quality function of SG

SONG ETAL.: MINING SUMMARIES FOR KNOWLEDGE GRAPH SEARCH 1889



where (1) jP j refers to the size of P , defined as the total
number of nodes and edges in P , (2) bp is a size bound to
normalize jP j, which can be specified as a recognition bud-
get (i.e., the largest summary size a user can under-
stand) [14], and (3) the support suppðP;GÞ is defined as jGP j

jGj ,
where jGP j (resp. jGj) refers to the size (i.e., the total number

of nodes and edges) in GP (resp. G).
Intuitively, the informativeness function Ið	Þ favors

larger summaries that also have higher support. Support
defined by the frequency of subgraphs [10] and minimum
description length [11] lead to frequent but less informative
patterns, as observed in [13].

Example 4. Consider the 2-summaries P1-P3 of the graph G
(with 45 entities and edges) in Fig. 1. Let the summary size
bound bp = 8, we can verify that the size of the base graph
jGP1 j is 20. Hence, suppðP1; GÞ = 20

45, and the informative-
ness of P1IðP1Þ is 7

8 
 20
45 = 0.39. Similarly, IðP2Þ = 6

8 
 12
45 =

0.20, and IðP3Þ = 6
8 
 11

45 = 0.18.

3.2 Reduced Summaries
A second challenge is to avoid redundancy among the sum-
maries, and to characterize diversified summaries. We
introduce a distance function to quantify the difference
between two summaries.

Distance function. To cope with the summary redundancy
due to commonly summarized entities, we define a distance
function diff for two summaries P1 and P2 as

diffðP1; P2Þ ¼ 1� jVGP1
\ VGP2

j
jVGP1

[ VGP2
j

where VGP1
=

S
u2VP1 ½u� (resp. VGP2

=
S

u2VP2 ½u�); that is, it
measures the Jaccard distance between the set of entities
summarized by P1 and P2 in their base graphs.

One can verify that diff is a metric, i.e., for any three d-sum-
maries P1, P2 and P3, diffðP1; P2Þ � diffðP1; P3Þ þ diffðP2; P3Þ.
Here we quantify entity set difference as a more important
factor of summary difference. Label/type difference of the
entities can also be applied to quantify weighted VGP

in the
distance function diff.

Example 5. Consider the 2-summaries P1-P3 of the graph G
in Fig. 1. The differences are calculated as follows: diffðP1;
P2Þ = 1 � 2

14 = 0.86, where they summarize two common
entities {The Eagles, Def Leppard}). Similarly, diffðP1; P3Þ
= 1.00, and diffðP2; P3Þ = 0.90.

Reduced Summaries. While the distance function captures
the difference of summaries in terms of their base graphs,
informative summaries may contain redundant pattern
nodes and edges that can be further reduced.

Example 6. Consider three summaries: P1 (Example 1), P 1
1 ,

and P 2
1 as illustrated in Fig. 2. We can verify that these

three summaries have a same base graph in G (Fig. 1).
Although P 1

1 and P 2
1 are larger than P1, they contain

“redundant” nodes (e.g., film and band in P 1
1 , and artist in

P 2
1 ) that do not contribute new information, hence should

be “reduced” to a concise summary P1.

Given two d-summaries P1 and P2, we say P1 and P2 are
equivalent, denoted as P1 � P2, if there exists a d-matchingR12

from P1 to P2 (denoted as P1 � P2), and its inverse relation
R�1

12 is a d-matching from P2 to P1 (denoted as P1 � P2). The
result below bridges summary equivalence and their support.

Lemma 2. For any graph G and its two d-summaries P1 and P2,
suppðP1; GÞ = suppðP2; GÞ if P1 � P2.

Proof. Given two equivalent summaries P1 = ðVP1 ; EP1 ; LP1Þ
and P2 = ðVP2 ; EP2 ; LP2Þ, it suffice to show that jGP1 j =jGP2 j, whereGP1 = ðV1; E1; LÞ (resp.GP2 = ðV2; E2; LÞ) refers
to the base graph of P1 (resp. P2). Denote as the d-matching
relation from P1 (resp. P2) toG asR12 (resp.R21).

(1) As P1 � P2, there exists a nonempty d-matching
R12 from P1 to P2. For every node u1 2 VP1 , there exists a
node u2 2 VP2 such that ðu1; u2Þ 2 R12. As P2 is a d-sum-
mary of G, for each node u2, there is a node v 2 V2 such
that ðu2; vÞ 2 R2. Following the definition of d-matching,
we can verify that ðu1; vÞ 2 R1. That is, any match of u2 in
G is also a match of u1. Thus, V2 � V1. Similarly, as
P2 � P1, we can verify that V1 � V2. That is, V1 = V2.

(2) Following the above proof, one can verify that E1 =
E2. Indeed, (a) E1 � E2, as E1 and E2 are edge matches
induced by the d-matching of R1 and R2, respectively,
and P1 � P2, and (b) E2 � E1. Thus, E1 = E2.

Putting these together, jGP1 j = jGP2 j. Thus, suppðP2;
GÞ ¼ suppðP1; GÞ by the definition of support. tu
A summary P is a reduced summary, if there exists no

smaller summary P 0 obtained by removing edges from P ,
such that P � P 0. A reduced summary is a minimal repre-
sentation of its equivalent summaries. Reduced summaries
are not discussed in [12]. Better still, a summary P can be
efficiently “reduced”, as verified by the result below.

Lemma 3. Given a summary P = ðVP ;EP ; LP Þ, there exists an
algorithm that computes a reduced summary Pr of P in
OððjVP j þ jEP jÞ2 þ jVP j2Þ time.

Proof. As a proof of Lemma 3, we provide a reduction algo-
rithm, denoted as Reduce, as follows. Given a summary
P , Reduce (1) computes a d-matching R from P to itself,
and (2) identifies all the node pairs ðu; vÞ such that
ðu; vÞ 2 R and ðv; uÞ 2 R. The node pairs forms an equiva-
lence relation R
 � R. It then “merges” all the nodes in
the same equivalence class to a single node ½u�, and redi-
rects the edges to ½u�. This yields a new pattern Pr.

It is easy to verify that Pr � P and P � Pr. We now
prove that Pr is the smallest pattern among its equivalent
counterparts, by contradiction. Assume there exists a
smaller summary P 0

r such that P 0
r � P . Then P 0

r � Pr.
Denote as the equivalence relation between P 0

r and Pr as
R
0 . Then there exists at least two distinct nodes u, u0 in Pr,
and a third node v in P 0

r, such that ðu; vÞ 2 R
0 , ðv; uÞ 2 R
0 ,
ðu0; vÞ 2 R
0 , and ðv; u0Þ 2 R
0 . Thus, u, u0 and v in P
belongs to the same equivalent class. Nevertheless, u and
u0 are not merged in Pr. Thus, either P

0
r is not equivalent to

P , or jPrj = jP 0
rj. Either leads to a contradiction.

The procedure Reduce takes OðjVP j þ jEP jÞ2Þ time to
compute the equivalence relation, and OðjVP j2Þ to

Fig. 2. Reduced summary and its “nonreduced” counterparts.
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perform the reduction. The total cost is thus in OððjVP j þ
jEP jÞ2 þ jVP j2Þ time. Lemma 3 follows. tu

Example 7. Following Example 6, the reduction process
finds that the two film nodes and two band nodes belong to
the same equivalent class, hence reduces P 1

1 to P1. Simi-
larly, P 2

1 can be reduced to P1 by merging all artist nodes.
Note that P 3

1 is a reduced summary and is not equivalent
toP1, as the artist inP1 can not bematchedwith those inP 3

1 .

3.3 Diversified Summarization
Good summaries should cover diverse concepts with infor-
mative summaries. We introduce a bi-criteria function F
that integrates informativeness Ið	Þ and distance diffð	Þ func-
tions. Given a summarization SG for a knowledge graph G,
the function F is defined as:

F ðSGÞ ¼ ð1� aÞ
X
Pi2SG

IðPiÞ þ a

cardðSGÞ � 1

X
Pi 6¼Pj2SG

diffðPi; PjÞ

where (1) cardðSGÞ refers to the number of summaries it
contains; and (2) a(2 ½0; 1�) is a tunable parameter to trade-
off informativeness and diversification. Note that we scale
down the second summation (diversification) which has
cardðSGÞðcardðSGÞ�1Þ

2 terms, to balance out the fact that the first

summation (informativeness) has cardðSGÞ terms.

Example 8. Set bp ¼ 8 and a ¼ 0:1, a top-2 diversified sum-
marization SG of G (Fig. 1) is fP1; P2g, with total quality
score F ðSGÞ ¼ 0:9 
 ð0:39þ 0:20Þ þ 0:1 
 0:86 ¼ 0:62.

Based on the quality metrics, we next introduce a graph
summarization problem for knowledge graphs.

Diversified Graph Summarization. Given a knowledge
graphG, integers k and d, and a size budget bp, the diversified
graph summarization problem is to compute a summarization
SG of G as a top k summary set, where


 each summary in SG is a reduced d-summary with
size bounded by bp; and


 the quality function F ðSGÞ is maximized.
That is, the diversified graph summarization is to iden-

tify k reduced summaries that are both informative and
diversified. Although desirable, the problem is (not surpris-
ingly) NP-hard. The lower bound of the hardness can be
shown by constructing a reduction from the maximum dis-
persion problem [15], which is known to be NP-complete.

Despite the hardness, we show that diversified sum-
marization is feasible over large knowledge graphs, by provid-
ing both sequential and parallel diversified summarization
algorithms in Section 4 and Section 5, respectively.

4 COMPUTING DIVERSIFIED SUMMARIES

Finding the optimal set of summaries by enumerating and
verifying all k-subsets of summaries is clearly not practical
for large G. We develop feasible algorithms to compute
diversified summaries. (1) We show that the problem is 2-
approximable, by providing an approximate mining algo-
rithm in Section 4.1. (2) We further develop a fast “anytime”
algorithm that response to ad-hoc accessing to the summa-
ries in Section 4.2.

4.1 Approximated Summarization
Let S


G denote the optimal summarization that maximizes
the diversification function F . For any given graph G, an

�-approximation mining algorithm returns a summarization

SG, such that F ðSGÞ � F ðS

G
Þ

� (� � 1). We show that diversi-
fied knowledge summarization is 2-approximable, by pre-
senting such an approximation algorithm.

Overview. Given a graph G, integers k and d, and size
budget bp, the algorithm, denoted as approxDis, has the fol-
lowing steps. (1) It invokes a mining algorithm sumGen
ðG; k; d; bpÞ to discover a set CP of reduced d-summaries
with size bounded by bp. (2) It then invokes a diversification
algorithm sumDiv to compute the top-k diversified summa-
ries SG from CP .

We next introduce the algorithms sumGen and sumDiv.
Algorithm sumGen. The major bottleneck is the summary

mining process. Clearly, enumerating and verifying all
summaries is expensive over large G. Instead, the algorithm
sumGen reduces redundant verification by performing a
one-time verification for all the equivalent summaries.

The algorithm extends its counterparts in [12] with a lat-
tice for reduced summaries, and a procedure to reduce pat-
tern candidates to their reduced counterparts.

Reduced Summary Lattice. Underlying the algorithm
sumGen is the maintenance of a lattice P = ðVr; ErÞ that enc-
odes the generation and validation of d-summaries, where
(1) Vr is a set of lattice node, and each node Pr 2 Vr at level j
of P is a reduced d-summary with j edges, and (2) there
exists an edge et = ðPr; P

0
rÞ 2 Er, if Pr and P 0

r are two
reduced d-summaries at level j and jþ 1 ðj 2 ½1; bp � 1�Þ,
and P 0

r is obtained by adding an edge to Pr.
The algorithm sumGen follows a level-wise generation

and validation with P as follows.

(1) It initializes P with patterns of single nodes. For each
reduced summary P at level i� 1, it invokes an oper-
ator Spawnði; P Þ to generate new patterns, where
each new pattern P 0 at level i is extended from P with
single edge e = ðu0; uÞ, where either u0 or u is in P .

(2) For each newly generated pattern P 0, it validates
if P 0 is a reduced d-summary by invoking a proce-
dure Validate (to be discussed); and if so, adds P 0 to
CP , and update P with the newly validated summa-
ries accordingly.

The above process repeats until no pattern within size
bound bp can be spawned from verified summaries. This
guarantees the complete and necessary verification of all
graph patterns that contributes to the top-k summaries SG.

Validation. We next introduce the procedure Validate.
Given a graph pattern P , it validates if P is a reduced
d-summary with two steps below. (1) Pattern reduction. The
procedure Validate first “reduces” a graph pattern P to its
reduced counterpart, by invoking procedure Reduce
(Section 3), in polynomial time (Lemma 1). (2) Verification.
Given a reduced pattern P 0 generated from Reduce, the
procedure Validate validates P 0 as follows. (1) It first checks,
at level-jP 0j, if there exists a reduced pattern Pr such that
Pr � P 0. If so, it sets suppðP 0; GÞ = suppðPr;GÞ, without veri-
fication (Lemma 2, Section 3). (2) Otherwise, it invokes the
procedure valiSum (Section 2.2), which checks if P 0 is a
d-summary. If so, it inserts P 0 to P as a validated reduced
d-summary, and stores suppðP 0; GÞ and base graph G0

P com-
puted by valiSum.

Algorithm sumDiv. Given a set of reduced summaries CP ,
the algorithm sumDiv greedily adds a summary pair fP; P 0g
from CP to SG that maximally improves a function F 0ðSGÞ,
defined as
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F 0ðP; P 0Þ ¼ ð1� aÞðIðP Þ þ IðP 0ÞÞ þ a 
 diffðP; P 0Þ

That is, F 0 is obtained by rounding down the original func-
tion F , which guarantees an approximation ratio for F . This
step is repeated bk2c times to obtain top-k d-summaries SG. If
k is odd, it selects an additional summary P that maximizes
F ðSG [ fPgÞ after bk2c rounds of selection.

Analysis. Algorithm sumGen correctly generates and
validates all reduced d-summaries, following from the cor-
rectness of procedures Reduce and Validate. The diversifi-
cation over the maximal summaries set CP can be reduced
to max-sum set diversification problem [15]. sumDiv adopts
the greedy strategy that simulates a 2-approximation algo-
rithm for max-sum diversification constrained by the metric
diff, hence guarantees approximation ratio 2.

The cost of approxDis is in Oðt1ðG; bpÞÞ (the cost
of sumGen) + Oðt2ðG; kÞÞ (the cost of sumDiv) time. (1)
Denote as N the total number of patterns generated in
sumGen. The total time cost of sumGen is in Oðt1ðG; bpÞÞ =
OðN 
 bpjV jjEjÞ time. (2) It takes Oðt2ðG; kÞÞ = Oðk2N2jV jÞ
time for sumDiv to find the top-k diversified summaries.
Thus, the total cost ofapproxDis is in Oðt1ðG; bpÞÞ+Oðt2ðG;
kÞÞ = OðN 
 bpjV jjEj þ k

2N
2jV jÞ time.

4.2 Anytime Diversified Summarization

The main drawback of the algorithm approxDis is that it
needs to wait until all the summaries to be validated before
the diversification. This may be infeasible under specified
resource constraints (e.g., response time). A more feasible
strategy is to develop an anytime scheme that maintains and
reports summaries in an online fashion, over a “stream” of
summary candidates as they are validated.

Given a problem I and a function J to measure the qual-
ity of a solution, an algorithm A is an anytime algorithm [16]
of I w.r.t. J if: a) A returns an answer AðIÞt when it is inter-
rupted at any time t; and b) J ðAðIÞt0 Þ � J ðAðIÞtÞ for t0 � t,
i.e., quality of results improve with more time. To measure
the quality of anytime output of A, we introduce a notation
of anytime approximation.

Anytime Approximation. An optimal anytime algorithm
A
 will return locally optimal answer A
ðIÞt at any time t,
given the fraction of the input accessed upto time t. We say
an anytime algorithm A is an anytime �-approximation algo-
rithm with respect to I and J , if at any time t, the answer

AðIÞt returned by A approximates the answer A
ðIÞt with a
fixed approximation ratio �.

We present the main result of this section below.

Theorem 1. There exists an anytime 2-approximation
algorithm that computes a diversified summarization, which
takes (1) OðNt 
 bpðbp þ jV jÞðbp þ jEjÞ þ k

2N
2
t Þ time, and (2)

Oðk 
Nt þ jSGjÞ space, where Nt is the number of summaries
it verified when interrupted, and jSGj refers to the total size of
summaries and their base graphs.

As a proof of Theorem 1, we next introduce an anytime
algorithm for diversified graph summarization.

Overview. The algorithm, denoted as streamDis, integra-
tes the validation and diversification as a single process.
(1) Instead of waiting for all the summaries to be validated,
it operates on a summary stream, and incrementally updates
SG with newly validated summaries whenever possible.
(2) It caches a tunable number of summary pairs in k ranked
lists that can potentially improve SG, following the con-
struction of Threshold algorithm [17] for top-k queries. This
ensures an adaptive performance of streamDis.

The algorithm streamDismaintains the following: (1) a set
CP of the reduced summaries validated by sumGen; and (2) a
set L of ranked lists, one list Li for each summary Pi 2 CP .
Each list Li caches the top-lp (n 2 ½1; k� 1�) summary pairs
ðPi; PjÞ in CP that have the highest F 0ðPi; PjÞ score, where
F 0ð	Þ refers to the revised quality function (see Section 4.1). It
bounds the size of the list Li based on a tunable parameter lp,
which can be adjusted as per the availablememory.

Algorithm streamDis. Given G, integer k, and two thresh-
old bp and lp, the algorithm streamDis computes a summeri-
zation SG as follows (see Fig. 3). It first initializes SG, CP , L,
and a flag termination (set as false) t indicate if the termina-
tion condition is satisfied (line 1). It then iteratively conducts
the following steps.

(1) Invokes sumGen to fetch a newly generated summary
Pt. Note that the procedure sumGen can be easily
modified to return a single summary after evaluation,
instead of returning a set of summaries in a batch.

(2) Updates CP and the list L (lines 5-7) based on the
newly fetched summary Pt. For each summary
Pi 2 CP , it computes the quality score F 0ðPi; PtÞ, and
updates the top-lp list Li of Pi by replacing the
lowest scoring pair ðPi; P

0Þ with ðPi; PtÞ, if F 0ðPi;
P 0Þ<F 0ðPi; PtÞ.

(3) Incrementally updates the top-k summaries SG

(lines 5-6). Greedily selects top bk2c pairs of summa-
ries with maximum quality F 0ð	Þ from the list set L,
and adds the summaries to SG. If jSGj < k, a sum-
mary P 2 CP n SG that maximizes the quality F ðSG[
fPgÞ is added to SG.

The above process is repeated until the termination
condition is satisfied (lines 8-9): a) no new summary can be
discovered in sumGen; or b) running time reaches the time-
bound tmax. The up-to-date SG is then returned.

Example 9. Consider the sample graphG in Fig. 1. Let bq = 8,
k = 2, d = 2 and a = 0.1. streamDis computes a summariza-
tion SG as follows. In the first round, it invokes sumGen to
discover a maximal 2-summary, e.g., P3, and initializes CP
and SG with P3. In round 2, it discovers a new 2-summary
P2, verifies F 0ðP2; P3Þ as 0:9 
 ð0:20þ 0:18Þ þ 0:1
 0:90 =
0.43, and updates L2, L3 and SG as shown below.

Fig. 3. Algorithm streamDis.
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round L CP SG

2
L2 = f< ðP2; P3Þ; 0:43g fP2; P3g fP2; P3gL3 = f< ðP3; P2Þ; 0:43g

3
L1 = f< ðP1; P2Þ; 0:62g

fP1; P2; P3g fP1; P2gL2 = f< ðP2; P1Þ; 0:62g
L3 = f< ðP3; P1Þ; 0:61g

In round 3, it discovers summary P1, and updates the
top-1 entries in each list of L. It verifies the pairwise qual-
ity scores as F 0ðP1; P2Þ = 0.62 (see Example 8) and
F 0ðP1; P3Þ = 0:9 
 ð0:39þ 0:18Þ þ 0:1 
 1:00 = 0.61. The
new top elements in the lists L1, L2, and L3 are hence
updated to ðP1; P2Þ, ðP2; P1Þ and ðP3; P1Þ respectively.
Hence, it replaces fP2; P3g 2 SG with fP1; P2g, and
updates the auxiliary structures as follows.

As all the maximal summaries within size 8 are dis-
covered, streamDis terminates and returns SG = fP1; P2g.
Analysis. The algorithm streamDis is an anytime 2-

approximation algorithm. Let CPt be the set of summaries
generated upto time t, and S


Gt
be the optimal summarization

over the cached summaries CPt . When lp = k � 1, streamDis
simulates its 2-approximation counterpart approxDis to pro-

duce a summarization SGt where F ðSGtÞ �
F ðS


Gt
Þ

2 . Note that
it suffices to store the top k� 1 pattern pairs in each list
Li 2 L that maximizes F 0ðPi; PjÞ to achieve anytime
2-approximation.

5 PARALLEL DIVERSIFIED SUMMARIZATION

The sequential summarization algorithms can be expensive
when the graph G is large. Nonetheless, we show that
the diversified graph summarization is feasible for large-scale
graphs by providing a parallel algorithm, with performance
guarantees on both scalability and quality.

Parallel Diversified Summarization. Given a knowledge
graph G, a partition strategy P constructs a fragmentation G
of G, by distributing G to n workers, where each worker Pi

ði 2 ½1; n�Þ manages its local fraction (a subgraph) of G,
denoted as Gi. Given a fragmented graph G, nworkers, inte-
gers k, d and size budget bp, the parallel diversified summa-
rization problem is to compute the diversified summaries
SG over the fragmentation G.

For NP-hard problems, a feasible parallel algorithm
should demonstrate good scalability with guaranteed accu-
racy. We start with a new characterization of feasible paral-
lel summarization in Section 4.1. We next introduce the
parallel summarization algorithm in Section 5.2.

5.1 Parallel Approximability
To characterize the effectiveness of parallel summarization,
we introduce a notion of parallel scalable approximations.

Parallel Scalability Revisited [18]. Consider a “yardstick”
sequential algorithm that, given graph G, integer d and size
bound bp, approximately computes the summaries, e.g., the
algorithm approxDis. Denote the time cost of approxDis
as tðjGj; bp; kÞ. A parallel summarization algorithm Ap is
parallel scalableif its running time by n processors can be
expressed as

T ðjGj; bp; k; nÞ ¼ O
tðjGj; bp; kÞ

n

� �

where Oð1Þ is a “bookkeeping” time to return the results,
and n, d, k� jGj.

Intuitively, parallel scalability measures speedup over a
sequential algorithms by parallelization. It is a relative mea-
sure w.r.t. a yardstick sequential algorithm A. A parallel
scalable Ap “linearly” reduces the sequential running time
of Awhen n increases.

Parallel Approximability. Consider an optimization (e.g.,
maximization) problem with an optimal solution quantified
by a single numerical value x. We say the problem is parallel
�-approximable, if there exists a parallel scalable algorithm Ap

w.r.t. a sequential yardstick algorithm A, and returns a solu-
tion ~x for which ~x � � 
 x.

We present the main result of this section below.

Theorem 2. There exists a parallel 2-approximable algorithm
w.r.t. the sequential algorithm approxDis that discovers diver-

sified top-k summaries in time cost in OðT ðG;bp;kÞ
n Þ.

As a proof of Theorem 2, we develop a parallel summary
discovery algorithm, denoted as paraDis. The algorithm
paraDis follows Bulk synchronization model. It runs in super-
steps, and iteratively executes two procedures in each super-
step: (1) Parallel summary validation, denoted as ParsumGen,
that “parallelizes” its sequential counterpart sumGen to gener-
ate and validate summaries (Section 4.1), and (2) Parallel diver-
sification, denoted as ParsumDiv, that “parallelizes” its
sequential counterpart sumDiv (Section 4.1) to update SG.

Performance Guarantees. Both the algorithms ParsumGen
and ParsumDiv work with n processors S1; . . . ; Sn and a
coordinator Sc for necessary synchronization, in parallel. We
will show (in Section 5.3) that the algorithm paraDis has
the following guarantees. (1) paraDis is parallel scalable. We

show that (a)ParsumGen takes in totalOðt1ðG;bpÞ
n Þ time, where

t1ðG; bpÞ is the cost of its sequential counterpart sumGen; and
(b) ParsumDiv takes in total Oðt2ðG;kÞ

n Þ time, where t2ðG; kÞ is
the cost of its sequential counterpart sumDiv. This ensures
that paraDis is parallel scalable. (2) Algorithm paraDis is a 2-
approximation. (3) Better still, paraDis demonstrates any-
time approximation.

We next introduce the algorithm paraDis in Section 5.2,
and provide its performance analysis in Section 5.3.

5.2 Parallel Diversified Summarization
Overview. Given a fragmented graph G, the algorithm
paraDis, shown in Fig. 4, executes at most bp supersteps. It
first invokes Spawnð0Þ to initialize P with single node pat-
terns (line 2). At each superstep i, paraDis performs the
following. (1) It invokes SpawnðiÞ to generate a set Si of
new graph patterns of size i at coordinator Sc (line 4). It
then invokes ParsumGen to validate the graph patterns at
the workers, in parallel (line 6), and updates P with newly
validated reduced summaries (line 7). (2) paraDis then
constructs work units M as pairs of summaries, and dis-
tributes M to all the workers following a load balancing
strategy (to be discussed, line 8). It invokes ParsumDiv to
collect the top diversified summary pairs SGi

, computed
locally at each worker in parallel (line 9), and update SG

with the summaries that improve the rounded diversifi-
cation function F 0ðSGÞ (Section 4.1). This process repeats
until in total bp supersteps are executed, or no new pattern
can be generated as indicated by a Boolean flag newP
(line 3).
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Below we present ParsumGen and ParsumDiv.
Parallel Validation. Upon receiving Si from SpawnðiÞ,

ParsumGen validates Si in parallel as follows.

(1) At Sc, for each pattern P 2 Si, ParsumGen identifies
a verified pattern Pr in P such that P is obtained by
adding an edge e to Pr. It then constructs a work unit
ðPr; e; jÞ, which encodes a request that “validate if P
is a d-summary with the base graph of Pr and edge
matches e locally at worker Sj”. It then distributes all
the work units to their corresponding workers to be
validated in parallel, following a workload balancing
strategy.

(2) Upon receiving a set of work units, for each work
unit ðPr; e; jÞ, each worker Si performs incremental
validationfor P as the “union” of Pr and e, which (a)
issues an on-demand fetching of eðGkÞ, the local
edge matches of e from other workers Sk (k 6¼ j), and
(b) verifies P in the graph PrðGjÞ [

S
k2½1;n�eðGkÞ

(i.e., the “union” of local matches PrðGjÞ of Pr and all
the edge candidates of e) instead of the entire frag-
ment Gj. Each worker stores the local matches P ðGjÞ
for the next round of computation.

For each validated d-summary P , it constructs a
bit vector P:lvecj with length jGjj that encodes the
matches of P (P:lvec½v� = 1 if v is a match; similarly
for edge matches). It returns the set of bit vectors as a
messageMj.

(3) Upon receiving all the messages Mj, Sc computes
P:lvec by performing “OR” over P:lvecjði 2 ½1; n�Þ,
and obtain the support of P . This completes a round
of parallel validation.

Parallel Diversification. Given the verified d-summaries CP so
far (including CPi ) (line 7), ParsumDiv updates diversified sum-
maries SG as follows.

(1) At Sc, for each summary P 2 CPi , paraDis constructs a
work unit wP . The work unit wP consists of (a) P and
the vector P:lvec, and (b) a set of summariesDP � CPi ,
as well as their bit vectors, which encodes a request
that “computes the distances between P and the sum-
maries inDP”. Given the work units M =

S
P2CPi wP ,

it distributes M to all the workers, following a work
load balancing strategy (to be discussed, line 8).

(2) Upon receiving a set of work unitsMj, for each work
unit wP 2 Mj, each worker Sj computes the distances
diffðP;P 0Þ (P 0 2 DP ) by bit vector operations on P:lvec
and P 0:lvec. It locally executes a top-k query to

find out the local top-k diversified pairs SGj
that max-

imize the diversification function F 0 (Section 4.1), and
returns SGj

to Sc.
(3) The coordinator Sc collects local top-k diversified

pairs from all the workers, and updates SGi
asS

j2½1;n�fSGj
g (line 10). It then updates the top-k

summaries SG with the new summary pairs in SGi
.

Optimization. The algorithm paraDis further reduces the par-
allel cost with the following optimization.

Load balancing. We partition the graph with linear deter-
ministic greedy (LDG) scheme [19], which assign a vertex to
the partition where it has the most edges. This helps us
cope with the skewed distribution of workloads.

(1) For each work unit ðPr; e; jÞ in ParsumGen, eðGÞ is
evenly distributed in P with size bounded by jGj

n .
ParsumGen quantifies a “runtime skewness” of

PrðGÞ at Sj as j1� n
jPrðGjÞj
jPrðGÞj j. If the estimated skew-

ness is above a threshold, it evenly redistributes
PrðGÞ to all the workers.

(2) For each work unit wP with a set of summaries DP , it
estimates an upper bound of the diversification cost
by processing DP as jDP jjV j2, and assigns the esti-
mated cost as a weight to each work unit. ParsumDiv
then adopts a greedy strategy for a general load bal-
ancing problem [20] to iteratively assigns work units
with the smallest cost to the workers with the (dynam-
ically updated) least load. By developing an approxi-
mation-factor preserving reduction, one can verify
that this algorithm is a 2-approximation [20], and is in
OðjWjjnlognÞ time, where jWjj � jCPi j as there are at
most jCPi j validated summaries at superstep i.

As verified in Section 7, the load balancing improves the
performance of parallel summarization by 7.7 times on
average, and remains effective for various skewness caused
by “super nodes” with large degrees.

5.3 Performance Analysis

To show that paraDis is parallel scalable relative to its
sequential counterpart approxDis, we only need to show that
its parallel validation and diversification is parallel scalable
relative to their sequential counterparts, respectively.

Parallel Scalability. Recall that the time cost of approxDis
is Oðt1ðG; bpÞÞ + Oðt2ðG; kÞÞ, where Oðt1ðG; bpÞÞ = OðN

bpjV jjEjÞ, and Oðt2ðG; kÞÞ = Oðk22 N2jV jÞ.
(1) At superstep i, each worker Sj (a) receives eðGkÞ

ðk 6¼ jÞ in OðjEj
n Þ time, due to the balanced edge parti-

tion of G, (b) sends eðGjÞ to other n-1 workers in

Oðn�1jEj
n Þ time, which is bounded by OðjV jjEj

n Þ time as

n � jV j, (c) conducts local validation in parallel,

which is inOðjSij
bpjV jjEj
n Þ time, and (d) returns the local

matches as bit vectors of length jV j in parallel, in

OðjV jjSi j
n Þ time. Taken together, the parallel cost of

ParsumGen in each superstep i is OðbpjSijjV jjEj
n Þ. As

there are bp supersteps that validate in totalN patterns

(
Pbp

i jSij ¼ N), the total cost is inOðN
bpjV jjEj
n Þ ¼ Oðt1ðG;bpÞ

n Þ.
(2) At superstep i, ParsumDiv locally computes the dis-

tances between P and each summary from work
units wP 2 Mj at each worker Sj, and identifies top k

Fig. 4. Algorithm paraDis.
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summary pairs, in total Oðk22 jMjjjDP j2jV jÞ time. This

is bounded by Oð
k2

2 jCPi j2jV j
n Þ time, as all the summaries

are from the validated ones CPi . The parallel cost of

sending top summaries to Sc takes Oðbp
kn Þ time. The

total parallel diversification cost is thus in Oðk
2

2N
2jV j
n Þ ¼

Oðt2ðG;kÞ
n Þ.

Putting these together, paraDis takes in total Oðt1ðG;bpÞ
n Þ þ

Oðt2ðG;kÞ
n Þ time. Thus, paraDis is parallel scalable w.r.t. its

sequential counterpart approxDis.
Approximation. The quality guarantee of paraDis follows

from the following invariant. (1) At any superstep i, the set
SG is a 2-approximation of the optimal diversified summa-
ries from the validated summaries. Indeed, ParsumGen cor-
rectly validates the patterns in parallel, and it suffices to
identify the top-k summaries from the local top-k diversi-
fied summary pairs from ParsumDiv. (2) When paraDis ter-
minates, it generates a 2-approximation of the diversified
summaries from all the validated ones with size bound bp.
Thus, paraDis is a parallel 2-approximation algorithm.

The above analysis completes the proof of Theorem 2.

6 KNOWLEDGE SEARCH WITH SUMMARIES

A knowledge search query is typically represented as a
graph pattern Q = ðVq; Eq; LqÞ [2], [3], [4], [5]. Given a knowl-
edge graph G, the answer QðGÞ of Q in G refers to the set of
all the subgraphs of G that are isomorphic to Q. We next
develop summary-based query evaluation algorithms.

“Summaries+D” Scheme. Given a query Q, a knowledge
graph G and a summarization SG of d-summaries, our
query evaluation algorithm, denoted as evalSum, only
refers to select d-summaries in SG and their base graphs as
“materialized views” [8], and fetches additional data in G
only when necessary. Following its counterpart in [12], it
invokes a procedure Select-Sum to select a set of reduced
summaries P, and (1) evaluates (the sub-query of) Q cov-
ered by P, by invoking existing subgraph search algorithm
(e.g., [21]), and by only accessing the base graphs of the
summaries in P. It then refines the matches for Q by visiting
additional nodes and edges in G, up to a bound amount D.
The algorithm evalSum visits no more than Bþ D nodes
and edges in G. In practice, both B and D can be tuned to
adapt to the actual resource bounds.

We next introduce the summary selection strategy.
Summary Selection. Given Q and summaries SG, as well as

a size bound B, we want to find the summaries P � SG,
such that a maximum fraction of Q is covered by P, with
total base graph size within B. Though desirable, this prob-
lem is NP-hard. This can be verified by a reduction from the
weighted set cover problem [22]. We thus resort to approxi-
mation algorithms.

We first show the following result.

Lemma 4. A query Q is covered by a summarization SG, if and
only if

S
Pi2SGQPi = Q, where QPi refers to the sub-pattern

induced by the d-matching from each summary Pi 2 SG to Q.

Proof. (1) If. Assume
S

Pi2SGQPi = Q. For each edge e = ðu;
vÞ in Q, there exists a summary Pi 2 SG such that e is in
QP . Hence there exists an edge ep = ðup; vpÞ in Pi such that
ðup; uÞ 2 Rd and ðvp; vÞ 2 Rd, where Rd is the d-similarity
between Q and P . For any edge e0 = ðu0; v0Þ in the answer
QðGÞ where e is mapped to, one can verify that ðup; u

0Þ 2

R0
d and ðvp; v0Þ 2 R0

d, where R0
d is the d-similarity between

Pi and G. HenceQ is covered by SG by definition. (2)Only
If. We prove the Only If condition by contradiction.
Assume Q is covered but there exists an edge e in Q not
covered by any d-summary. Then there exists at least one
match of e not included in any base graph, contradicting to
the assumption thatQ is covered. Lemma 4 thus follows. tu
Selection Procedure. Based on Lemma 4, the selection pro-

cedure, denoted as Select-Sum, uses a greedy strategy to
add the summaries P that maximally covers Q, and have
small base graphs in G. To this end, it dynamically updates

a rank rðP Þ =
jEQP

nEcj
jGP j for the summaries in SG, where (1)

EQP
refers to the edge set of the base graph QP , induced by

the d-similarity between the summary P and query Q (as a
graph) (Lemma 4); (2) Ec refers to the edges of Q that has
been “covered”, i.e., already in a base graph of a selected
summary P 0 2 P. In each round of selection, a summary
with highest rðP Þ is added to P, and the ranks of the
remaining summaries in SG are dynamically updated. The
process repeats until n patterns are selected, or the total size
of the base graphs reaches B.

The selection procedure Select-Sum is efficient: it takes
OðcardðSGÞbqðbq þ jVpjÞðbq þ jEpjÞÞ time, where bq and jVqj,
jEqj are typically small. Better still, it guarantees the approx-
imation ratio (1� 1

e) for optimal summaries under budget B,
by reducing the summary selection to the budgeted maxi-
mum coverage problem [22].

7 EXPERIMENTAL EVALUATION

Using real-world and synthetic knowledge graphs, we con-
ducted four sets of experiments to evaluate (1) Performance of
the summary mining algorithms approxDis and streamDis;
(2) Scalability of the parallel summarization algorithm
paraDis, (3) Effectiveness of the algorithm evalSum for query
evaluation; and (4) Effectiveness of the summarymodel, using
a case study.

Experimental Setting. We used the following setting.
Datasets. We use three real-life knowledge graphs:

(1) DBpedia1 consists of 4.86M nodes and 15M edges, where
each entity carries one of the 676 labels (e.g.,’Settlement’,
’Person’, ’Building’); (2) YAGO,2 a sparser graph compared to
DBpedia with 1.54M nodes and 2.37M edges, but with more
diversified (324343) labels; and (3) Freebase(version 14-04-14),3

with 40.32M entities, 63.2M relationships, and 9630 labels.
We also use BSBM4 e-commerce benchmark to generate

synthetic knowledge graphs over products with different
types, related vendors, consumers, and views. The generator
is controlled by the number of nodes (up to 60M), edges (up
to 152M), and labels drawn from an alphabet of 3080 labels.

Queries. To evaluate evalSum, we generated 50 subgraph
queries Q = ðVq; Eq; LqÞ over real-world graphs with size
controlled by ðjVpj; jEpjÞ. We inspected meaningful queries
posed on the real-world knowledge graphs, and generated
queries with labels drawn from their data (domain, type,
and attribute values). For synthetic graphs, we generated
500 queries with labels drawn from BSBM alphabet. We

1. http://dbpedia.org
2. http://www.mpi-inf.mpg.de/yago
3. http://freebase-easy.cs.uni-freiburg.de/dump/
4. http://wifo5-03.informatik.uni-mannheim.de/bizer/

berlinsparqlbenchmark/
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generate queries with different topologies (star, trees, and
cyclic patterns) and sizes, ranging from (4,6) to (8,14).

Algorithms.We implemented the algorithms below in Java.

(1) Summarization algorithms approxDis and streamDis,
compared with two baselines. (a) GRAMI, an open-
source graph mining tool [10] that discovers frequent
subgraphs as summaries. The base graph of a sum-
mary P refers to the subgraph of G induced by the
edge matches, specified by all the subgraph isomor-
phism mappings from P to G. (b) heuDis, a heuristic
counterpart of streamDis that incrementally main-
tains a diversified summarization SG over the stream
of summaries following [23]. Each time a new sum-
mary P is validated, it swaps out a summary P 0 in SG

if F ðSG n fP 0g [ fPgÞ > F ðSGÞ. The algorithm does
not guarantee 2-approximation.

(2) The parallel summarization algorithm paraDis (incl-
uding procedures ParsumGen and ParsumDiv),
compared with paraDisn, its counterpart without
load balancing strategy.

(3) Query evaluation algorithm evalSum, comparedwith
three variants: (a) evalRnd, a counterpart of evalSum
that performs random selection instead of summary
selection Select-Sum (Section 6); (b) evalGRAMI,
which accesses the base graphs of the frequent sub-
graphs fromGRAMI; and (c) evalNo that directly eval-
uates Q by accessing G with an optimized subgraph
isomorphism algorithm in [21]. We allow a resource
bound D to be posed on evalRnd and evalGRAMI to
allow them to return approximate answers by fetch-
ing at mostD additional data fromG.

Partition Strategy. We implemented three partition strate-
gies. (1) LDG [19], which assign a vertex to the partition
where it has the most edges; (2) METIS [24], a well-regarded
offlinemultilevel partitioning heuristic; and (3) Hashing [19],
which assign a vertex based on its id and a hashing function.
By default, we use LDG, unless otherwise specified.

We ran all our experiments on a linux machine powered
by an Intel 2.4 GHz CPU with 128 GB of memory. For the
tests of parallel summarization, we used Amazon EC2 r4.
large instances, each powered by an Intel 2.8 GHz CPU and
16G of memory. We ran each experiment 5 times and report
the averaged results.

Overview of Results. We summarize our findings below.

(1) Mining reduced summaries is feasible over large
real-world graphs. (Exp-1). For example, the algo-
rithm streamDis takes 90 seconds to generate sum-
marizations with 99 percent of the quality of their
counterparts from approxDis on YAGO with 3.91
million entities and relationships, and is orders of
magnitude faster than GRAMI that is based on fre-
quent subgraphs. We also found for reduced sum-
maries, the cost of approxDis is 61 percent less on
average compared with its counterpart in [12], due
to that it prunes many redundant summaries that
are non-reduced.

(2) It is feasible to summarize large-scale knowledge
graphs in parallel (Exp-2). For example, It takes
55 seconds for paraDis to find diversified summaries
with 20 workers over YAGO. The performance is
improved by 3.3 times when the number of workers
increases from 4 to 20.

(3) The summary-based search significantly improves
the efficiency of query evaluation (Exp-3). For exam-
ple, evalSum is 40 times faster than evalNo (without
using summarization) over YAGO, and 2.5 times
faster than evalGRAMI that access frequent sub-
graphs. In general, it does not take much additional
cost (D � 5%jGj) to find exact answers.

(4) Our case study shows that summarization captured
by d-summaries is concise, and provides a good cov-
erage for diversified entities. Moreover, reduced
summaries can be applied to query suggestion and
knowledge base completion, as verified by our case
study (Exp-4).

We next report the details of our findings.
Exp-1: Effectiveness of Summary Discovery. We fixed parame-

ter a = 0.5 for diversification, k = 64, the summary size bound
bp = 6, d ¼ 1 and lp = k-1 for this experiment, unless otherwise
specified. In addition, we set a support threshold u = 0.005
for sumGen used by approxDis, streamDis, and heuDis. For
GRAMI, we carefully adjusted its support threshold to allow
the generation of patterns with similar label set and size to
those from approxDis. We also excluded “overly general”
(top 2 percent frequent) labels such as “Thing”.

Anytime Performance. We evaluate the anytime perfor-
mance of streamDis and heuDis in terms of the following.

(1) We report the “anytime accuracy” of streamDis as
F ðSGt

Þ
F ðSGÞ ,

where SGt refers to the summaries returned by streamDis at
time t, and SG refers to the one returned by approxDis. The
accuracy of heuDis is defined similarly. (2) We also report
the “convergence” time of streamDis and heuDis when the
accuracy reaches 99 percent as a satisfiable quality.

Fig. 5a shows the anytime accuracy of streamDis
and heuDis over YAGO. (1) The quality of summaries
from both algorithms increases as t and lp increases. (2)
streamDis convergences faster to near-optimal summariza-
tion with larger lp, as more summary pairs are compared.
Remarkably, it converges after processing 70 patterns (in
less than 100 seconds) when lp = 63. heuDis converges faster
than streamDis, but stops at accuracy 0.9 on average. These
results verify that streamDis reasonably trades time with
accuracy, with desirable summarization quality.

Efficiency of Sequential Summarization. We report the per-
formance of sequential summarization algorithms over real-
world datasets. For the two anytime algorithms streamDis
and heuDis, we report their convergence time. As shown in
Fig. 5b, (1) streamDis and approxDis are both orders of
magnitude faster than GRAMI. The latter does not run to
completion within 10 hours over both DBpedia and
Freebase; (2) Performance of streamDis is comparable to
that of heuDis, and streamDis is 3-6 times faster than
approxDis with comparable accuracy; (3) streamDis is

Fig. 5. Sequential summarization: Performance.
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feasible over large knowledge graphs. For example, it takes
less than 100 seconds to produce high-quality summaries
by verifying only 64 summaries for YAGO.

Varying bp. Using the settings in Fig. 5a over YAGO, we
varied the summary size threshold bp from 6 to 14 (node # +
edge#). As shown in Fig. 6a, all the algorithms take more
time with larger values of bp, as more candidate patterns are
examined and verified. On average, streamDis is 4 times
faster than approxDiswith 90 percent accuracy.

Varying d. Using the same setting over YAGO, we varied
d from 1 to 3. Fig. 6b shows that all the algorithms take
more time with larger d, as expected. Additionally, the con-
vergence time of streamDis and heuDis are less sensitive to
increasing of dwhen compared with approxDis.

We also evaluated the scalability of the sequential
algorithms using larger synthetic graphs, by varying jGj
from ð10M; 27MÞ to ð60M; 152MÞ (not shown). The algor-
ithms streamDis and heuDis scale well with larger jGj (less
than 1 hour over graphs of size ð60M; 152MÞ), and are less
sensitive to increasing jGj due to their early convergence. In
contrast, GRAMI does not run to completion in 10 hours
over graphs of size ð10M; 27MÞ.

Exp-2: Parallel Summarization. We next evaluate the scal-
ability of parallel algorithm paraDis by varying the number
of workers and the effectiveness of load balancing strategy
by varying the skewness of partitioned graphs.

Varying n. Using the same setting for a, bp, k and d as in
Exp-1, we varied the number of workers n from 4 to 20, and
report the performance of paraDis over the three real-world
datasets in Figs. 8a, 8b, and 8c, respectively. We find the fol-
lowing. (1) paraDis scales well with n. The performance of
paraDis is improved by 3.3 times when n is increased from 4
to 20. (2) The load balancing strategy improves the perfor-
mance of paraDisn by 4.4 times on average. In general, it is
feasible to summarize large graphs. For example, it takes 200
seconds for paraDis to summarizeDBpedia, when n = 20.

Using the same setting, we evaluated the performance of
paraDis over a large synthetic graph with size ð60M; 152MÞ.
The result shown in Fig. 8d is consistent with its counter-
parts over real-world graphs.

Varying Skewness. Fixing n = 12, and using the same set-
ting for a, bp, k and d as in Exp-1, we evaluated the impact
of partition strategies to paraDis, compared with its

counterpart paraDisn without load balancing. We define the
skewness as the standard deviation of the largest degrees of
the border nodes from all the 12 partition, and generated
partitions using LDG, METIS and Hashing over Yago and
BSBM, respectively. The skewness values for these three
methods are 1.9k, 2.9k and 3.3k (resp. 8.8k, 12.6k, 15.1k) for
Yago (resp. BSBM). The result shown in Fig. 9 tells us the
following: (1) Both algorithms take more time with more
“skewed” fragments, due to larger communication cost;
on the other hand, (2) paraDis outperforms paraDisn by
7.7 times on average, and is much less sensitive to the
change of skewness due to the load balancing strategy.

Exp-3: Effectiveness of evalSum. We evaluate the efficiency
of evalSum, and compare it with evalSum (D = 0), evalRnd;
evalGRAMI, and evalNo.

Varying jQj. Fixing m (the number of selected summa-
ries) as 64 and card (SG) as 500, we varied the query size jQj
from ð4; 6Þ to ð8; 14Þ over YAGO. Fig. 7a tells us the follow-
ing. (1) By leveraging 2-summaries, evalSum and evalSum (D
= 0) find answers in less than 60 seconds, and improves the
efficiency of evalNo by 40 and 50 times respectively; evalNo
does not terminate within 104 seconds for queries with 6
nodes. (2) On average, evalSum and evalSum (D = 0) are 2.5
and 4 times faster than evalGRAMI, respectively. Indeed, we
found that frequent subgraphs as summaries cover less
answers of queries due tomore strict matching semantics.

The summary selection is also effective. In all cases, it
takes less than 10 seconds, and improves the response time
of evalRnd (with random selection) by 2 times. We also eval-
uate the scalability of evalSum with synthetic graphs with
different sizes. The result (Fig. 7b) shows that evalSum
scales better than other algorithms.

Fig. 6. The impact of bound bp and d.

Fig. 8. Scalability of paraDis.

Fig. 7. Efficiency of evalSum.

Fig. 9. Load balancing of paraDis (Varying skewness).
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Accuracy. We evaluated the accuracy of the query
answers produced by evalSum (D = 0), evalRnd, and
evalGRAMI. Let QðGÞA be the set of node and edge matches
returned by a query evaluation algorithm A, and QðGÞ the
exact match set. We define the accuracy of algorithm A as

the Jaccard similarity
QðGÞA\QðGÞ
QðGÞA[QðGÞ. For evalNo, the accuracy is

1. As shown in Fig. 10a and 10b, all algorithms perform bet-
ter with larger n, and evalSum achieves the highest
accuracy with D ¼ 1:5%. Remarkably, evalSum can get
100 percent accuracy with 7.5 percent of the original graph,
while evalGRAMI needs more data compared to evalSum.

Query Diversity. We also compared the performance
of evalSum (D = 1:5%) with evalNo over three categories of
queries over YAGO: (1) Frequent, which carries most fre-
quent labels in G; (2) Diversified, where the query node
labels range over a diversified set of labels; and (3) Mixed
that combines queries uniformly sampled from the two cat-
egories. The table below shows the results, where C (resp.
CISO) refers to the total number of nodes and edges (includ-
ing summaries) visited by evalSum (resp. evalNo).

evalSum takes more time for Frequent queries due to
large candidates for frequent labels and visits more entities
with different labels for Diversified queries. In general, it
visits no more than 27 percent (resp. 8 percent) data visited
by evalNo (resp. jGj) to achieve accuracies not less than
93 percent.

Exp-4: Case Study. We performed case studies to evaluate
the practical application of the knowledge summaries.

Keyword Search. We first investigate how reduced sum-
maries can support ambiguous keyword search in knowl-
edge graphs. We sampled 50 ambiguous keywords from
DBpedia (e.g., “waterloo”, “Avatar”), each has on average 4
different types. We invokes approxDis to output top diversi-
fied reduced summaries with entities that matches the key-
words. (1) We found that reduced summaries can
distinguish ambiguous terms. For example, the top-3 sum-
maries distinguish “waterloo” as Battle, University, and
Films. These summaries suggest intermediate keywords as
enhanced queries (e.g., Military Person); as well as diversi-
fied facts. (2) More diversified summarization requires
less summaries to cover all possible types of keywords. For
example, it takes at most 15 reduced summaries to cover all
the types for each keyword when a ¼ 0:9. In contrast, most
of the summaries from GRAMI are redundant. It cannot
cover the entity types of keywords even with 64 summaries.

Cross-Domain Queries. We evaluate how the summaries
can be used to support “cross-domain” querying over mul-
tiple knowledge bases [1]. We generated 20 cross-domain
queries over YAGO and DBpedia. We also extended
evalSum to evaluate the queries by accessing the summaries
of YAGO and DBpedia, respectively, and “merges” the
matches from each if they have the same URI, to form a
complete answer.

We show a query and its answer in Fig. 11. The query
finds Award wining IT Companies with specified products
and their parent companies(IC). While YAGO reports the
parent company, and DBpedia provides products informa-
tion, evalSum reports complete answer(Amazon:com) by
accessing summaries P7 and P8 from YAGO and DBpedia,
respectively, and integrating the partial answers.

Fact Checking. We also evaluate how the summaries can
be used to support fact checking. Given a knowledge base
G and a new fact (an edge) e ¼ ðu; vÞ with edge label r, it is
to predict whether e belongs to a missing part of G. Two
established models are (1) Path ranking (PRA) [25], which
samples paths with length up to d via random walks from a
set of training (true) facts, extracts path features and adopts
logistic regression to train a binary classifier; and (2) SFE
[26], which samples paths from subgraphs that contain the
facts, and constructs enhanced path features from the sub-
graphs by e.g., replacing edge type with similar ones.

We developed a model (Summary) that extends PRA
with reduced summaries as follows. We select 20 triple pat-
terns, where a triple pattern rðx; yÞ is a single-edge graph
pattern with nodes having labels x and y, connected by rela-
tion r. For each pattern rðx; yÞ, we sample 80 percent of its
instances as training set (true facts) and the rest 20 percent
instances as testing set. Given rðx; yÞ and its training set, we
invoke streamDis to discovery reduced d-summaries with
base graphs that contain the training facts. For each true fact
e and each summary P , we construct a feature vector, where
each entry encodes whether there exists a base graph of P
that contains e. We fed the feature vectors to PRA to train a
binary classifier. We report the average precision, recall and
accuracy (the ratio of facts that can be predicted correctly)
of these models, over the 20 triple patterns.

Interestingly, this simple extension already improves the
accuracy of both PRA and SFE. As reported in Table 2,
Summary achieves additional 43 percent (resp. 11 percent)
gain of F1 score over DBpedia compared with PRA (resp.
SFE). A closer inspection of the features of Summary shows
that d-summaries can suggest subgraphs that are more dis-
criminant to “define” true facts, comparedwith paths induced
by random-walk [25]. The latter whichmay involve noise and

Fig. 10. Accuracy of evalSum.

Fig. 11. Cross-domain queries over DBpedia and Freebase.

TABLE 2
Average Accuracy of Fact Checking

YAGO DBpedia

Model Acc. Prec. Rec. F1. Acc. Prec. Rec. F1.
PRA 0.87 0.64 0.35 0.38 0.89 0.70 0.43 0.47
SFE 0.81 0.56 0.89 0.67 0.69 0.49 0.95 0.60
Summary 0.92 0.84 0.62 0.69 0.89 0.76 0.63 0.67
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non-discriminant features. On the other hand, Summary has
lower recall than SFE, as path features are able to “cover”
more true cases than subgraphs that pose more topological
constraints to identify true facts. We defer the study of sum-
mary-based fact prediction to futurework (Section 9).

8 RELATED WORK

We categorize the related work as follows.
Graph Summarization. Graph summarization has been

studied to describe the data graph with a small amount of
information [9], [14], [27], [28], [29], [30]. These approaches can
be classified as follows: (1) Graph compression, which aim to
compress graphs within a bounded error by minimizing a
information complexity measure [9], [27], [29], e.g., Minimum
Description Length (MDL), or to reduce the space cost such
that the topology of the original data graph can be approxi-
mately restored [27], [29]. The algorithm in [9] employs cluster-
ing and community detection to describe the data graph with
predefined frequent structures (vocabulary) including stars
and cliques. (2) Summarization techniques attempt to con-
struct summaries over attributed graphs, where nodes with
similar attributes are clustered in a controlled manner using
parameters such as participation ratio [28]. (3) (Bi)simulation
relation is adopted [31] to group paths carrying same labels up
to a bounded length. Relaxed bisimulation has also been stud-
ied to generate summaries over a set of answers [30]. This
work summarizes the entities only when they are pairwise
similar, which can be an overkill for knowledge graphs. (4)
Entity summarization [14] generates diversified answers for
entity search instead of general subgraph queries.

Our work differs from these works in the following
ways: (1) We introduce lossy summaries for knowledge
query evaluation, rather than to compress the graphs [9],
[27], [29]. (2) We discovery summaries to access single
graphs rather than for query answers [14], [30], and can be
applied for diversified result summarization. (3) The sum-
maries are measured in terms of both informativeness and
diversity, which is more involved than MDL-based meas-
ures [27], [29]. (4) In contrast to [27], [28], our summary
model requires little parameter tuning effort. In addition,
diversified summaries are not addressed in these works.

Graph Pattern Mining. Clustering approaches have been
studied to group a set of similar graphs [32]. These techni-
ques can not be applied for summarizing a single graph.
Frequent subgraph patterns can be mined from a single
graph to describe large graphs [9], [10].

Parallel algorithms have been developed for pattern min-
ing in terms of subgraph isomorphism, for transactional
graph databases [34] or single graph [35]. These methods
can not be readily applied for diversified summarization for
a single graph. We develop parallel scalable algorithms that
are not addressed in prior work.

Answering Queries Using Views: View-based query evalu-
ation has been shown to be effective for SPARQL [7] and
pattern queries [8]. It typically requires equivalent query
rewriting by accessing views defined in the same query lan-
guage. By contrast, (1) we show that reduced summaries
can be used to evaluate graph queries defined by subgraph
isomorphism, which are not defined in the same language;
and (2) We develop feasible summarization algorithms as
view discovery process. These are not addressed in [7], [8].

Graph summaries can also be used to enhance machine
learning models for fact prediction and reasoning in

knowledge graphs. Notablemodels for this task include path-
based models [25], [26], [36], recurrent neural networks [37],
and reinforcement learning [38]. PRA [25] extracts features
from paths around training facts via random walk with
restarts to train models that validate new facts. To improve
model accuracy,SFE [26] extends PRAwithmore expressive
path features extracted from subgraphs that are induced by
random walks. For example, it uses one-sided paths that do
not necessarily connect two entities of a fact, and similarity
features that encode paths with similar relations. DeepPath
[38], which is a reinforcement learning based method, uses a
policy-based agent based on knowledge graph embeddings
and samples the most promising relation to extend its path.
While all these models use path features, graph summaries
can explicitly encode features as subgraphs they summarize,
beyond paths. This indicates more discriminant features and
more accuratemodels, as verified by our case study.

9 CONCLUSIONS

We proposed a class of reduced d-summaries, and devel-
oped sequential and parallel summarization algorithms
for large knowledge graphs. We also developed query
evaluation algorithm by effective summary selection. Our
experimental results verified that our algorithms are feasi-
ble, and can significantly reduce the cost of knowledge
graph query evaluation. One future topic is to develop
summary-based algorithms for more types of analytical
queries beyond subgraph queries. Another topic is to
extend summaries with similarity functions as seen in
graph embedding, and to study their applications in
knowledge base completion supported by neural networks
and reinforcement learning.
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